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Abstract. Constructive cascade algorithms are powerful methods for training 
feedforward neural networks with automation of the task of specifying the size 
and topology of network to use. A series of empirical studies were performed to 
examine the effect of imposing constraints on constructive cascade neural net-
work architectures. Building a priori knowledge of the task into the network 
gives better generalisation performance. We introduce our Local Feature Con-
structive Cascade (LoCC) and Symmetry Local Feature Constructive Cascade 
(SymLoCC) algorithms, and show them to have good generalisation and net-
work construction properties on face recognition tasks.  

1   Introduction 

The functionality and complexity of a backpropagation trained neural network (NN) 
are greatly influenced by the network architecture, number of neurons, and neuron 
connectivity. The greater number of connections and the larger the possible magni-
tude of the weights, the better the NN is able to model complex functions. 

A constructive cascade neural network is a feedforward neural network in which 
the network architecture is built during the learning process, in order to obtain a good 
match between network complexity and the complexity of the problem to solve [1]. 

In some highly regular tasks such as image recognition, a priori knowledge about 
the task can be built into the network for better generalisation performance. Classical 
works in visual pattern recognition have shown the advantages of using local features 
and combining them to form higher order features. Extracting local features can be 
viewed as a way of reducing the space of possible functions that can be generated 
without overly reducing the network’s computational power [2]. 

In this paper, we propose two constructive cascade algorithms that incorporate a 
priori knowledge about the problem to be solved, i.e. face recognition, into the design 
of the architecture and explore the relationship between the generalisation perform-
ance and variations on the architecture. These are the Local Feature Constructive  
Cascade (LoCC) and Symmetry Local Feature Constructive Cascade (SymLoCC) al-
gorithms. They have lesser number of free parameters but preserve the good generali-
sation properties of constructive cascade algorithms. Unlike other face recognition 
technique such as in [3] our approach does not require normalisation and  
pre-processing of data sets or additional feature extraction procedures. 



 Generalisation Performance vs. Architecture Variations 237 

2   Method 

2.1   Neural Network Topology  

Constructive algorithms such as CasPer 
and Cascade Correlation (CasCor) start 
with the minimal size NN architecture of-
ten with no hidden neurons [4] as in  
Fig. 1. Initially, all input neurons are 
fully-connected to the output neurons. The 
number of connections in the initial net-
work would be very large for face recog-
nition, hence LoCC and SymLoCC start                                                                                  
with an initial network with one hidden layer           Fig. 1. Cascade Correlation 
as shown on the left in Fig. 2.  

The initial architecture of our algorithm is a slight modification of the two layer 
8x8 architecture proposed in [5] which was shown to give good generalisation  
performance on handwritten digit recognition and face recognition. Instead of a 
two-dimensional 16 by 16 hidden layer with a total of 256 hidden neurons, our al-
gorithm uses a reduced number of hidden neurons, which is 8 by 8 hidden layer, to 
achieve smaller network size with similar good generalisation performance. Each 
hidden neuron functions as a local feature extractor that receives inputs from the 
corresponding receptive field in the input layer. The hidden neurons are thus par-
tially connected to the input neurons but are fully-connected to the ten output  
neurons.  

The middle diagram in Fig. 2 shows the network structure after one cascade layer 
is added. Instead of adding hidden neurons to the network one at a time during the 
learning process as in typical constructive cascade algorithms such as CasCor [6], 
our algorithm adds a number of cascade chunks (cascade layers), each of a fixed 
size set prior to training. Treadgold and Gedeon used a similar approach to build 
cascade towers for their algorithm [4]. In order to limit the functionality of the cas-
cade layer and to reduce the overall number of hidden neurons, the size of each cas-
cade layer is smaller than the hidden layer. Each cascade layer consists of 4 by 4 
neurons, each extracts local features from both the input and the hidden layer in the 
initial network. Preserving the characteristic of constructive cascade algorithms, the 
cascade layers receive input from all preceding layers and are fully-connected to the 
output layer. 

There are three variants of the two architectures presented in this paper, with the 
same overall structure shown in Fig. 2. They differ in the size and structure of the 
receptive fields. In the first variant, each neuron in the hidden layer takes its inputs 
from 25 neurons on the input layer situated in a 5 by 5 square neighbourhood. For 
neurons in the hidden layer that are one unit apart, their receptive fields in the input 
layer are four units apart. Hence, their receptive fields overlap by one row or col-
umn of units. 
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Fig. 2. Local Feature Constructive Cascade Neural Networks  

In the first variant, each neuron in a cascade layer takes its inputs from the input 
layer situated in a 9 by 9 neighbourhood and from the hidden layer situated in a 3 by 3 
neighbourhood. For each neuron that is adjacent, the input patches from the input 
layer are eight units apart and are two units apart on the hidden layer. In other words, 
9 by 9 patches on the input plane have one row or column of unit overlapped and the 
3 by 3 patch on the hidden layer has one row or column of unit overlapped. Each cas-
cade layer has one-to-one connection to all preceding cascade layers. 

In the second variant, each hidden neuron receives 36 inputs from a 6 by 6 square 
neighbourhood in the input layer with 2 rows or columns of units overlapped. In the 
cascade layer, each neuron receives inputs from a 10 by 10 patch with 2 rows or col-
umns of neurons overlapped. Neurons in the cascade layer also receive inputs from 16 
hidden neurons in the hidden layer, arranged in 4 by 4 receptive fields with two rows 
or columns of neurons overlapped. As in the first variant, all neurons in each cascade 
layer have one-to-one connections with all preceding cascade layers. 

Finally, the third variant employs larger receptive fields than both previous archi-
tectures. Hidden neurons in the initial network each takes a 7 by 7 receptive field in 
the input layer. Neurons in cascade layers each takes a 11 by 11 receptive field in the 
input layer and from the 5 by 5 receptive field in the hidden layer. As before, each 
cascade layer has one-to-one connections with all preceding cascade layers. 

2.2   Data Set 

The two data sets used were originally proposed by Georghiades, Belhumeur, and 
Kriegman [7] and is available from the Yale Face Database B. The original data set 
contains a total of 5,850 single light source images of 10 subjects each seen under 576 
viewing conditions (9 poses of 64 illumination conditions and 1 with ambient illumi-
nation). The images are 8-bit grey scale with size 480 height x 640 width. Due to its 
massive size, not all of the data set in the Yale Face Database B was employed in the 
first data set. Thirteen images of each subject under nine different poses were  
randomly selected from the original data set. Of these images, 630 of them are desig-
nated as the training set, and 360 as test set. Each face image was resized using  
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nearest-neighbour interpolation [8] into a 24 x 32 image, with added 0s to form a 32 x 
32 images. The second consists of 650 frontal view images in total, split into 450 
training data and 200 testing data, randomly. 

2.3   Training Methodology  

Human faces possess some symmetric characteristics. SymLoCC implements this 
knowledge by adjusting all weights leaving the input layer so that the weights for neu-
rons in the right-half of the square plane mirror the value of the weights in the left-
half of the plane (i.e. the weights are shared). Hence, the number of free parameters 
from input layer to hidden and cascade layers are 50% less than in the non-symmetric 
algorithm LoCC. 

Before training our neural networks, all weights and biases of the network are ini-
tialised using the Nguyen-Widrow method [9]. The activation function used in all 
networks is the hyperbolic tangent function. Hyperbolic tangent functions are sym-
metric functions, which are believed to be able to yield faster convergence than non-
symmetric functions. Resilient propagation (RPROP) [10] was use for all networks 
learning. RPROP is an adaptive learning algorithm which performs a direct adaptation 
of the weight step size based on local gradient information. Instead of taking into ac-
count the magnitude of the error gradient as seen by a particular weight, RPROP uses 
only the sign of the gradient. This allows the algorithm to adapt the step size without 
the size of the gradient interfering with the adaptation process. Also, a weight biasing 
technique [11] is employed to bias the search direction of the RPROP algorithm in fa-
vour of the weights of the newly added neurons, setting different initial update values 
in the RPROP algorithm. 

For each architecture variant, the network starts from the initial architecture and the 
learning process continues for a maximum of 100 epochs. A new cascade layer is 
added to the network when either the maximum epoch is reached or the MSE is less 
than or equal to 0.03. The input patterns were presented in a consistent order, batch 
trained. Each experiment was performed 5 times with different initial conditions. The 
performance function is the standard mean squared error (MSE), the output layer was 
composed of 10 units, one per class, and we used a winner-takes-all method to clas-
sify the networks’ output error on the test data set. 

3   Experimental Results 

We have evaluated our method using two subsets of Yale Database B as described in 
Section 2.2. The problem to be solved is face recognition of ten subjects. Information 
of each face image is input into the network through 32 x 32 that is 1,024 input neu-
rons. The 10 output neurons each represent one of the subjects. Table 1 shows the av-
erage of the best performance of the five repetitions of each experiment. 

Addition of each cascade layer increases the number of weights by some 1,500 to 
2,000. These increases lead usually to some increase in performance for each  
architecture-variant combination. The performance of most networks is quite good, 
ranging from a few results in the vicinity of 80%, but with more than half of the archi-
tecture-variants with results over 95%.The average of the best performance of the five  
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Table 1. Average of best performance on both data sets 

Architecture 
Number 

of 
weights 

Generalisation 
Performance % 

(all poses) 

Generalisation 
Performance % 

(frontal pose) 
initial network 2,314 94.2 95.7 
cascade layers: 1 3,930 95.2 96.5 
                         2 5,562 97.7 99.5 

551- 
991- 
331 

                         3 7,210 98.6 99.0 
initial network 3,018 94.5 93.5 
cascade layers: 1 5,050 94.8 95.0 
                         2 7,098 98.2 99.2 

662- 
10102- 
442 

                         3 9,162 97.7 99.1 
initial network 3,850 92.2 92.9 
cascade layers: 1 6,362 94.7 95.8 
                         2 8,890 98.6 98.8 

LoCC 
 
 

 

773- 
11113- 
553 

                         3 11,434 97.6 98.6 
initial network 1,514 83.3 92.0 
cascade layers: 1 2,482 90.8 94.1 
                         2 3,466 97.9 99.1 

551- 
991- 
331 

                         3 4,466 97.6 98.8 
initial network 1,866 82.6 88.5 
cascade layers: 1 3,098 91.9 95.0 
                         2 4,346 97.8 98.4 

662- 
10102- 
442 

                         3 5,610 97.7 98.5 
initial network 2,282 86.7 81.8 
cascade layers: 1 3,826 93.6 94.1 
                         2 5,386 97.8 97.6 

SymLoCC 

773- 
11113- 
553 

                         3 6,962 98.3 98.7 

 
repetitions of each experiment performed using the first data set is plotted in Fig. 3, 
and similarly for the second data set in Fig. 4. The connecting lines in the graph show 
the growth of complexity of each architecture from the initial network to the final net-
work structure with three cascade layers. 

In Fig. 3 we can see a number of patterns. Most obviously, as the number of 
weights increases, there is generally an increase in the generalisation performance of 
the networks. The best results are those located in the top-left corner, hence the best 
result is either LoCC-551-991-331 initial network, or SymLoCC-551-991-331 with 
two cascade layers. The choice between them would be context dependent. I.e., is the 
50% increase in number of weights worthwhile for 3.7% increase in performance? Al-
ternatively stated, is this worthwhile for a 2/3 decrease in the remaining error (from 
5.8% to 2.1%)? In subsequent discussion, we will focus on differential effects of our 
various architectural variations, and the effect of sequential addition of cascade layers. 

For the first of our architectures, the local feature constructive cascade (LoCC) 
network, shown in Fig. 3 by the solid lines, we can see that addition of a cascade layer 
increases the weights appreciably, while only slightly increasing the generalisation 
ability. This pattern holds for the 2nd and 3rd variants, as they also show little im-
provement in generalisation. The addition of a second cascade layer has a beneficial 
effect, in that there is a more significant increase in generalisation ability. The addi-
tion of a third cascade layer is slightly detrimental in two cases and mildly beneficial 
in one case, so this is not useful as we add weights without improving generalisation 
ability much or at all. 
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Fig. 3. LoCC and SymLoCC results using the first data set (all poses) 

For the second architecture, using symmetry (SymLoCC), shown in Fig. 3 by 
dashed lines, the performance starts at much lower values. The addition of a cascade 
layer improves generalisation for all three variants. At this point the second architec-
ture variants with a cascade layer have very much the same number of weights as the 
first architecture and no cascade, but with lower generalisation. On the addition of a 
second cascade layer, again we find an increase in performance for all three variants, 
and now we achieve a situation of lower weights but higher performance than the next 
step of the first architecture. A third cascade layer produces little effect. 

We can note a few subtle observations. For the second architecture, as we move 
from the 1st variant to the 3rd, adding the first two cascade layers, the slope of im-
provement decreases from 1st variant to 3rd variant on the addition of the first cascade 
layer, and further decreases in the same way on the addition of the second cascade 
layer. A possible explanation is that the patch sizes are overall better in the 1st variant 
and worsen to the 3rd variant. 

In Fig. 4, we have slightly better data, in that the frontal poses are by definition 
more symmetrical and might benefit more from the symmetry incorporated in our 
second architecture. No pre-processing has been done to align faces in the images. 

Our first architecture (solid lines) has similar effects as in Fig. 3, in that the  
addition of the first cascade layer has some effect, which is increased by the second 
cascade layer. At this point the overall best result is reached, the 1st variant with two 
cascade layers has 99.5% accuracy on the test set. A third cascade layer is not  
beneficial. 
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Fig. 4. LoCC and SymLoCC results using the second data set (frontal pose only) 

Our second architecture (dashed lines) also has similar results to Fig. 3, in that re-
sults start lower than the first architecture, the addition of two cascade layers produces 
results which are substantially improved, and better than the first architecture. 

For Fig. 4, we can make a different illustration of the tradeoff if we assume that ab-
solute performance is most important. In that case the best networks have 3,466 
weights 99.1%, and 5,562 weights and 99.5% generalisation performance, respec-
tively. Depending on the measurement error, the percentage results may not be relia-
bly distinguishable so clearly the version with significantly lower weights is best. 

4   Conclusion and Future Work 

We have introduced our algorithm for constructing cascade networks for face recogni-
tion using our notion of cascade layers, by constraining the cascade process by adding 
chunks of 4 x 4 neurons. We have examined a number of variants of this model, fo-
cusing on the sizes of patches taken by each layer from the preceding layer. We have 
extended this model by introducing a symmetry component. From our testing we have 
shown that our models work well on a standard face image database. We have dem-
onstrated that restricting the data to just the frontal pose improves all our results. An 
alternative expression of this statement demonstrates the strength of our approach: if 
we take the frontal pose as the baseline, then using multiple different poses cost only 
a 0.9% drop in maximum performance. 
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Our future work will be to further examine the architecture variations in our model. 
The three variations discussed here increased all the patch sizes from 1st variant to 2nd, 
and from 2nd variant to 3rd variant, however the patch sizes could be varied independ-
ently. We will also investigate the effects of aligning the frontal pose images on the 
images. 
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