
M. Köppen et al. (Eds.): ICONIP 2008, Part II, LNCS 5507, pp. 236–243, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Generalisation Performance vs. Architecture Variations
in Constructive Cascade Networks

Suisin Khoo and Tom Gedeon

School of Computer Science
College of Engineering and Computer Science

Australian National University
ACT 0200 Australia

{suisin.khoo,tom}@cs.anu.edu.au

Abstract. Constructive cascade algorithms are powerful methods for training
feedforward neural networks with automation of the task of specifying the size
and topology of network to use. A series of empirical studies were performed to
examine the effect of imposing constraints on constructive cascade neural net-
work architectures. Building a priori knowledge of the task into the network
gives better generalisation performance. We introduce our Local Feature Con-
structive Cascade (LoCC) and Symmetry Local Feature Constructive Cascade
(SymLoCC) algorithms, and show them to have good generalisation and net-
work construction properties on face recognition tasks.

1 Introduction

The functionality and complexity of a backpropagation trained neural network (NN)
are greatly influenced by the network architecture, number of neurons, and neuron
connectivity. The greater number of connections and the larger the possible magni-
tude of the weights, the better the NN is able to model complex functions.

A constructive cascade neural network is a feedforward neural network in which
the network architecture is built during the learning process, in order to obtain a good
match between network complexity and the complexity of the problem to solve [1].

In some highly regular tasks such as image recognition, a priori knowledge about
the task can be built into the network for better generalisation performance. Classical
works in visual pattern recognition have shown the advantages of using local features
and combining them to form higher order features. Extracting local features can be
viewed as a way of reducing the space of possible functions that can be generated
without overly reducing the network’s computational power [2].

In this paper, we propose two constructive cascade algorithms that incorporate a
priori knowledge about the problem to be solved, i.e. face recognition, into the design
of the architecture and explore the relationship between the generalisation perform-
ance and variations on the architecture. These are the Local Feature Constructive
Cascade (LoCC) and Symmetry Local Feature Constructive Cascade (SymLoCC) al-
gorithms. They have lesser number of free parameters but preserve the good generali-
sation properties of constructive cascade algorithms. Unlike other face recognition
technique such as in [3] our approach does not require normalisation and
pre-processing of data sets or additional feature extraction procedures.

 Generalisation Performance vs. Architecture Variations 237

2 Method

2.1 Neural Network Topology

Constructive algorithms such as CasPer
and Cascade Correlation (CasCor) start
with the minimal size NN architecture of-
ten with no hidden neurons [4] as in
Fig. 1. Initially, all input neurons are
fully-connected to the output neurons. The
number of connections in the initial net-
work would be very large for face recog-
nition, hence LoCC and SymLoCC start
with an initial network with one hidden layer Fig. 1. Cascade Correlation
as shown on the left in Fig. 2.

The initial architecture of our algorithm is a slight modification of the two layer
8x8 architecture proposed in [5] which was shown to give good generalisation
performance on handwritten digit recognition and face recognition. Instead of a
two-dimensional 16 by 16 hidden layer with a total of 256 hidden neurons, our al-
gorithm uses a reduced number of hidden neurons, which is 8 by 8 hidden layer, to
achieve smaller network size with similar good generalisation performance. Each
hidden neuron functions as a local feature extractor that receives inputs from the
corresponding receptive field in the input layer. The hidden neurons are thus par-
tially connected to the input neurons but are fully-connected to the ten output
neurons.

The middle diagram in Fig. 2 shows the network structure after one cascade layer
is added. Instead of adding hidden neurons to the network one at a time during the
learning process as in typical constructive cascade algorithms such as CasCor [6],
our algorithm adds a number of cascade chunks (cascade layers), each of a fixed
size set prior to training. Treadgold and Gedeon used a similar approach to build
cascade towers for their algorithm [4]. In order to limit the functionality of the cas-
cade layer and to reduce the overall number of hidden neurons, the size of each cas-
cade layer is smaller than the hidden layer. Each cascade layer consists of 4 by 4
neurons, each extracts local features from both the input and the hidden layer in the
initial network. Preserving the characteristic of constructive cascade algorithms, the
cascade layers receive input from all preceding layers and are fully-connected to the
output layer.

There are three variants of the two architectures presented in this paper, with the
same overall structure shown in Fig. 2. They differ in the size and structure of the
receptive fields. In the first variant, each neuron in the hidden layer takes its inputs
from 25 neurons on the input layer situated in a 5 by 5 square neighbourhood. For
neurons in the hidden layer that are one unit apart, their receptive fields in the input
layer are four units apart. Hence, their receptive fields overlap by one row or col-
umn of units.

238 S. Khoo and T. Gedeon

Fig. 2. Local Feature Constructive Cascade Neural Networks

In the first variant, each neuron in a cascade layer takes its inputs from the input
layer situated in a 9 by 9 neighbourhood and from the hidden layer situated in a 3 by 3
neighbourhood. For each neuron that is adjacent, the input patches from the input
layer are eight units apart and are two units apart on the hidden layer. In other words,
9 by 9 patches on the input plane have one row or column of unit overlapped and the
3 by 3 patch on the hidden layer has one row or column of unit overlapped. Each cas-
cade layer has one-to-one connection to all preceding cascade layers.

In the second variant, each hidden neuron receives 36 inputs from a 6 by 6 square
neighbourhood in the input layer with 2 rows or columns of units overlapped. In the
cascade layer, each neuron receives inputs from a 10 by 10 patch with 2 rows or col-
umns of neurons overlapped. Neurons in the cascade layer also receive inputs from 16
hidden neurons in the hidden layer, arranged in 4 by 4 receptive fields with two rows
or columns of neurons overlapped. As in the first variant, all neurons in each cascade
layer have one-to-one connections with all preceding cascade layers.

Finally, the third variant employs larger receptive fields than both previous archi-
tectures. Hidden neurons in the initial network each takes a 7 by 7 receptive field in
the input layer. Neurons in cascade layers each takes a 11 by 11 receptive field in the
input layer and from the 5 by 5 receptive field in the hidden layer. As before, each
cascade layer has one-to-one connections with all preceding cascade layers.

2.2 Data Set

The two data sets used were originally proposed by Georghiades, Belhumeur, and
Kriegman [7] and is available from the Yale Face Database B. The original data set
contains a total of 5,850 single light source images of 10 subjects each seen under 576
viewing conditions (9 poses of 64 illumination conditions and 1 with ambient illumi-
nation). The images are 8-bit grey scale with size 480 height x 640 width. Due to its
massive size, not all of the data set in the Yale Face Database B was employed in the
first data set. Thirteen images of each subject under nine different poses were
randomly selected from the original data set. Of these images, 630 of them are desig-
nated as the training set, and 360 as test set. Each face image was resized using

 Generalisation Performance vs. Architecture Variations 239

nearest-neighbour interpolation [8] into a 24 x 32 image, with added 0s to form a 32 x
32 images. The second consists of 650 frontal view images in total, split into 450
training data and 200 testing data, randomly.

2.3 Training Methodology

Human faces possess some symmetric characteristics. SymLoCC implements this
knowledge by adjusting all weights leaving the input layer so that the weights for neu-
rons in the right-half of the square plane mirror the value of the weights in the left-
half of the plane (i.e. the weights are shared). Hence, the number of free parameters
from input layer to hidden and cascade layers are 50% less than in the non-symmetric
algorithm LoCC.

Before training our neural networks, all weights and biases of the network are ini-
tialised using the Nguyen-Widrow method [9]. The activation function used in all
networks is the hyperbolic tangent function. Hyperbolic tangent functions are sym-
metric functions, which are believed to be able to yield faster convergence than non-
symmetric functions. Resilient propagation (RPROP) [10] was use for all networks
learning. RPROP is an adaptive learning algorithm which performs a direct adaptation
of the weight step size based on local gradient information. Instead of taking into ac-
count the magnitude of the error gradient as seen by a particular weight, RPROP uses
only the sign of the gradient. This allows the algorithm to adapt the step size without
the size of the gradient interfering with the adaptation process. Also, a weight biasing
technique [11] is employed to bias the search direction of the RPROP algorithm in fa-
vour of the weights of the newly added neurons, setting different initial update values
in the RPROP algorithm.

For each architecture variant, the network starts from the initial architecture and the
learning process continues for a maximum of 100 epochs. A new cascade layer is
added to the network when either the maximum epoch is reached or the MSE is less
than or equal to 0.03. The input patterns were presented in a consistent order, batch
trained. Each experiment was performed 5 times with different initial conditions. The
performance function is the standard mean squared error (MSE), the output layer was
composed of 10 units, one per class, and we used a winner-takes-all method to clas-
sify the networks’ output error on the test data set.

3 Experimental Results

We have evaluated our method using two subsets of Yale Database B as described in
Section 2.2. The problem to be solved is face recognition of ten subjects. Information
of each face image is input into the network through 32 x 32 that is 1,024 input neu-
rons. The 10 output neurons each represent one of the subjects. Table 1 shows the av-
erage of the best performance of the five repetitions of each experiment.

Addition of each cascade layer increases the number of weights by some 1,500 to
2,000. These increases lead usually to some increase in performance for each
architecture-variant combination. The performance of most networks is quite good,
ranging from a few results in the vicinity of 80%, but with more than half of the archi-
tecture-variants with results over 95%.The average of the best performance of the five

240 S. Khoo and T. Gedeon

Table 1. Average of best performance on both data sets

Architecture
Number

of
weights

Generalisation
Performance %

(all poses)

Generalisation
Performance %

(frontal pose)
initial network 2,314 94.2 95.7
cascade layers: 1 3,930 95.2 96.5
 2 5,562 97.7 99.5

551-
991-
331

 3 7,210 98.6 99.0
initial network 3,018 94.5 93.5
cascade layers: 1 5,050 94.8 95.0
 2 7,098 98.2 99.2

662-
10102-
442

 3 9,162 97.7 99.1
initial network 3,850 92.2 92.9
cascade layers: 1 6,362 94.7 95.8
 2 8,890 98.6 98.8

LoCC

773-
11113-
553

 3 11,434 97.6 98.6
initial network 1,514 83.3 92.0
cascade layers: 1 2,482 90.8 94.1
 2 3,466 97.9 99.1

551-
991-
331

 3 4,466 97.6 98.8
initial network 1,866 82.6 88.5
cascade layers: 1 3,098 91.9 95.0
 2 4,346 97.8 98.4

662-
10102-
442

 3 5,610 97.7 98.5
initial network 2,282 86.7 81.8
cascade layers: 1 3,826 93.6 94.1
 2 5,386 97.8 97.6

SymLoCC

773-
11113-
553

 3 6,962 98.3 98.7

repetitions of each experiment performed using the first data set is plotted in Fig. 3,
and similarly for the second data set in Fig. 4. The connecting lines in the graph show
the growth of complexity of each architecture from the initial network to the final net-
work structure with three cascade layers.

In Fig. 3 we can see a number of patterns. Most obviously, as the number of
weights increases, there is generally an increase in the generalisation performance of
the networks. The best results are those located in the top-left corner, hence the best
result is either LoCC-551-991-331 initial network, or SymLoCC-551-991-331 with
two cascade layers. The choice between them would be context dependent. I.e., is the
50% increase in number of weights worthwhile for 3.7% increase in performance? Al-
ternatively stated, is this worthwhile for a 2/3 decrease in the remaining error (from
5.8% to 2.1%)? In subsequent discussion, we will focus on differential effects of our
various architectural variations, and the effect of sequential addition of cascade layers.

For the first of our architectures, the local feature constructive cascade (LoCC)
network, shown in Fig. 3 by the solid lines, we can see that addition of a cascade layer
increases the weights appreciably, while only slightly increasing the generalisation
ability. This pattern holds for the 2nd and 3rd variants, as they also show little im-
provement in generalisation. The addition of a second cascade layer has a beneficial
effect, in that there is a more significant increase in generalisation ability. The addi-
tion of a third cascade layer is slightly detrimental in two cases and mildly beneficial
in one case, so this is not useful as we add weights without improving generalisation
ability much or at all.

 Generalisation Performance vs. Architecture Variations 241

Fig. 3. LoCC and SymLoCC results using the first data set (all poses)

For the second architecture, using symmetry (SymLoCC), shown in Fig. 3 by
dashed lines, the performance starts at much lower values. The addition of a cascade
layer improves generalisation for all three variants. At this point the second architec-
ture variants with a cascade layer have very much the same number of weights as the
first architecture and no cascade, but with lower generalisation. On the addition of a
second cascade layer, again we find an increase in performance for all three variants,
and now we achieve a situation of lower weights but higher performance than the next
step of the first architecture. A third cascade layer produces little effect.

We can note a few subtle observations. For the second architecture, as we move
from the 1st variant to the 3rd, adding the first two cascade layers, the slope of im-
provement decreases from 1st variant to 3rd variant on the addition of the first cascade
layer, and further decreases in the same way on the addition of the second cascade
layer. A possible explanation is that the patch sizes are overall better in the 1st variant
and worsen to the 3rd variant.

In Fig. 4, we have slightly better data, in that the frontal poses are by definition
more symmetrical and might benefit more from the symmetry incorporated in our
second architecture. No pre-processing has been done to align faces in the images.

Our first architecture (solid lines) has similar effects as in Fig. 3, in that the
addition of the first cascade layer has some effect, which is increased by the second
cascade layer. At this point the overall best result is reached, the 1st variant with two
cascade layers has 99.5% accuracy on the test set. A third cascade layer is not
beneficial.

242 S. Khoo and T. Gedeon

Fig. 4. LoCC and SymLoCC results using the second data set (frontal pose only)

Our second architecture (dashed lines) also has similar results to Fig. 3, in that re-
sults start lower than the first architecture, the addition of two cascade layers produces
results which are substantially improved, and better than the first architecture.

For Fig. 4, we can make a different illustration of the tradeoff if we assume that ab-
solute performance is most important. In that case the best networks have 3,466
weights 99.1%, and 5,562 weights and 99.5% generalisation performance, respec-
tively. Depending on the measurement error, the percentage results may not be relia-
bly distinguishable so clearly the version with significantly lower weights is best.

4 Conclusion and Future Work

We have introduced our algorithm for constructing cascade networks for face recogni-
tion using our notion of cascade layers, by constraining the cascade process by adding
chunks of 4 x 4 neurons. We have examined a number of variants of this model, fo-
cusing on the sizes of patches taken by each layer from the preceding layer. We have
extended this model by introducing a symmetry component. From our testing we have
shown that our models work well on a standard face image database. We have dem-
onstrated that restricting the data to just the frontal pose improves all our results. An
alternative expression of this statement demonstrates the strength of our approach: if
we take the frontal pose as the baseline, then using multiple different poses cost only
a 0.9% drop in maximum performance.

 Generalisation Performance vs. Architecture Variations 243

Our future work will be to further examine the architecture variations in our model.
The three variations discussed here increased all the patch sizes from 1st variant to 2nd,
and from 2nd variant to 3rd variant, however the patch sizes could be varied independ-
ently. We will also investigate the effects of aligning the frontal pose images on the
images.

References

1. Kwok, T.-Y., Yeung, D.-Y.: Constructive Algorithms for Structure Learning in Feedfor-
ward Neural Networks for Regression Problems. IEEE Trans. on Neural Networks 8, 630–
645 (1997)

2. LeCun, Y.: Generalization and Network Design Strategies. Technical report, Dept. of
Computer Science, University of Toronto (1989)

3. Grudin, M.A.: On Internal Representations in Face Recognition Systems. Pattern Recogni-
tion 33, 1161–1177 (2000)

4. Treadgold, N.K., Gedeon, T.D.: Exploring Architecture Variations in Constructive Cas-
cade Networks. In: IEEE Int. Jt. Conf. on Neural Networks, pp. 343–348 (1998)

5. Khoo, S.: Application of Shared Weight Neural Networks in Image Classification. Hon-
ours Thesis, Dept. Computer Science, Australian National University (2008)

6. Fahlman, S., Liebiere, C.: The Cascade-Correlation Learning Architecture. Technical re-
port, School of Computer Science, Carnegie Mellon University (1990)

7. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination
Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 23, 643–660 (2001)

8. Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Trans. on Informa-
tion Theory IT-13, 21–27 (1967)

9. Nguyen, D., Widrow, B.: Improving the Learning Speed of 2-Layer Neural Networks by
Choosing Initial Values of the Adaptive Weights. In: IEEE Int. Jt. Conf. on Neural Net-
works, pp. 21–26 (1990)

10. Riedmiller, M., Braun, H.: A Direct Adaptive Method for Faster Backpropagation Learn-
ing: The RPROP Algorithm. In: IEEE Int. Conf. on Neural Networks, pp. 586–591 (1993)

11. Treadgold, N.K., Gedeon, T.D.: Increased Generalization through Selective Decay in a
Constructive Cascade Network. In: Proc. 1998 IEEE Int. Conf. on Systems, Man, and Cy-
bernetics, pp. 4465–4469 (1998)

	Generalisation Performance vs. Architecture Variations in Constructive Cascade Networks
	Introduction
	Method
	Neural Network Topology
	Data Set
	Training Methodology

	Experimental Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

